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ABSTRACT 
 
A SpaceWire system comprises several units connected together with SpaceWire links, either directly or indirectly via 
one or more SpaceWire routers.  The SpaceWire links are high-speed, bi-directional, point-to-point communication 
links operating at a baud rate of between 2 and 400 Mbits/s. SpaceWire runs over a cable containing four twisted pairs. 
At each end of a SpaceWire link is a coder/decoder (CODEC) which encodes packets of data to be transmitted into a 
serial bit-stream and decodes an incoming serial bit-stream into a data packets. The serialised data is encoded using a 
data-strobe technique where the strobe changes state at a bit interval whenever the data remains constant. This allows 
simple clock recovery in the receiver by XORing the data and strobe signals together and provides better skew tolerance 
than data-clock encoding. The data-strobe signals are transmitted using low-voltage differential signalling (LVDS). 
SpaceWire CODECs are used in both nodes and routers and consequently form an important element of any SpaceWire 
system. 
 
Recognising the key role of the SpaceWire CODEC in future on-board data-handing systems ESA contracted the 
University of Dundee, Austrian Aerospace and Astrium to develop a high-performance SpaceWire (CODEC) in VHDL. 
Dundee were responsible for the design and implementation of the CODEC. The resulting VHDL code has been 
extensively tested by Austrian Aerospace and ESA. It is expected to operate at a maximum data rate of 200 Mbits/s 
when implemented in a suitable radiation tolerant ASIC technology. 
 
INTRODUCTION 
 
The SpaceWire system is based on nodes connected together indirectly through routers or directly node to node via 
SpaceWire links.  The role of a SpaceWire CODEC in a system is the physical device which encodes and decodes the 
serial bit-stream over the SpaceWire links.  The CODEC described in this paper is a high speed serial 
transmitter/receiver implementation of the SpaceWire CODEC compliant with the ECSS-50-12A SpaceWire standard 
[1]. The CODEC is implemented in technology independent RTL VHDL code.  The aims of the VHDL code 
implementation are re-usability, technology independence, high-speed operation, low area footprint and configurability.  
The VHDL design was not approached as a one size fits all implementation, rather a configurable solution was 
implemented to allow the user maximum control over the final gate level representation of the CODEC. 
 
This paper outlines the SpaceWire CODEC function and interfaces.  An overview of the CODEC architecture and the 
function of the internal logic blocks is presented.  The CODEC input and output interfaces are presented, and the 
configuration interface is discussed also.  A brief overview of the verification strategy is then presented. 
 
ARCHITECTURE OVERVIEW 
 
The CODEC comprises of a transmitter, receiver and an initialisation state machine as shown in “Fig 1”.  Data packets 
and timecodes are accepted from a host system through parallel interfaces to the transmitter.  The data is serialized in 
the transmitter and encoded through the SpaceWire link using DS (Data-Strobe) encoding [1] [2].  Data is only 
transmitted when the CODECs at each end of the SpaceWire link have reserved buffer space using the SpaceWire flow 
control mechanism.  When space for eight more data characters in the receive buffer is available then a FCT (Flow 
Control Token) is transmitted to allow eight data characters to be transferred.  In this way buffer overruns are detected 
as a link error by the CODEC. The serial data-strobe encoded bit-stream is received, error checked and decoded into 
SpaceWire characters in the receiver.  Received data characters which were requested using FCTs are placed in the 



 

 

receiver buffer and timecodes are output directly to the host system.  Link control functions are implemented by the 
initialisation state machine, in particular the link can be started, disabled or left to auto-start on reception of an input bit-
stream.   
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Fig 1 SpaceWire CODEC Architecture Overview 

 
The error recovery scheme described in the SpaceWire standard [1] is implemented internally in the CODEC.  Errors 
detected in the CODEC include incorrect parity bit received, escape character sequence error, receiver disconnection 
error, receiver credit error (data character received when not expected), transmit credit overflow and character sequence 
error at startup. On error detection the initialisation state machine disables the transmitter and receiver therefore causing 
a disconnection and error recovery at the other end of the SpaceWire link. 
 
When an error is detected the SpaceWire link is disconnected and the tail of the packet currently being received is 
assumed to be lost.  To preserve the packet structure used in SpaceWire systems an EEP (error end of packet) character 
is added to the tail of the packet.  This indicates the packet was partly received but an error occurred before the normal 
EOP (end of packet) marker was received.  As the SpaceWire link has been disconnected then the FCT characters 
which were transferred to the other end of the link, denoting receive buffer space, are assumed to be invalid and the 
internal receiver FCT pointers are updated to free any reserved buffer space.  The transmitter error recovery scheme 
clears the tail of the packet being transmitted when the error was detected from the transmitter FIFO.  Therefore when 
the next link start-up and connection occurs the next data character to be transmitted is the head of the next SpaceWire 
packet.  In this way the error recovery system is transparent to the host system which needs only to perform the 
SpaceWire packet level protocol. 
 
Transmit FIFO and receive FIFO are not implemented internally in the CODEC as they are typically implementation 
technology dependent structures.  The CODEC implements the most common synchronous FIFO interface for the 
transmitter, using an empty flag and read enable signal to read data into the transmitter.  The receive FCT operations are 
implemented internally by the CODEC using internal receive buffer read and write pointers and an internal FCT 
pointer.  The receive buffer pointers can be used to address an external buffer space with synchronous flags and write 
enable signals output by the receiver.  
 
SERIAL INTERFACE 
 
The SpaceWire CODEC uses the IEEE 1355 DS-DE [2] (Data-strobe, Differential Ended) encoding method to serialize 
SpaceWire characters for communication over the SpaceWire link.   
 
Data Strobe Encoding 
 
In data-strobe encoding two signals are used in each direction, data and strobe, with four cable wires are required in 
each direction due to the differential signaling method used.  When transmitting, at each bit interval the strobe signal 
retains its value when data changes and in turn strobe changes when data retains its value.  In this way the receiver can 
recover the transmitter clock by an exclusive-or operation of data and strobe signals.  The recovered clock is half the 
transmitter bit-rate therefore rising and falling edges of the recovered clock are used to sample the data input.  This 
relationship can be seen in “Fig 2”.  
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Fig 2 Receiver clock recovery 

 
 
 
Single Data Rate (SDR) and Double (or Dual) Data Rate (DDR) bit-stream encoding 
 
The SpaceWire CODEC allows the user to select SDR or DDR encoding for the transmitted bit-stream.  The term SDR 
applies to an encoding method whereby one bit of data is output for each transmit clock period.  SDR encoding is the 
simplest method where the data and strobe outputs of the transmitter are connected directly to the output buffers.  DDR 
encoding outputs two bits of serial data for each transmit clock period, one bit which will be output on the rising edge of 
the clock and one bit which will be output on the falling edge.  The serial bit-rate is double the transmitter clock period 
rate therefore reducing power consumption in the transmitter by half and reducing logic placement and routing effort on 
the target technology.  DDR encoding requires extra complexity at the output buffers as the two bits of data available on 
each transmit clock period must be multiplexed onto the output pin in such a way as to avoid glitches occurring at the 
outputs.  Depending on the users target technology this may be implemented as a logic function or as a technology 
specific DDR output buffer.  
 
CONFIGURATION INTERFACE 
 
The ability to configure the CODEC to suit the user’s application was a prominent goal in the design.  A number of 
constants are defined in an accompanying top level VHDL package, each with a specific global or low-level effect on 
the final gate level circuit output from the user’s synthesis tool.  For each implementation of the CODEC the user 
should set the configuration constants dependent on the requirements of the SpaceWire system and the constraints of the 
target technology. 
 
Pipelining Configuration 
 
In a digital system the amount of logic between flip-flops defines the minimum period of the clock and therefore the 
maximum clock frequency.  With pipelining extra flip-flops are inserted into the design to decrease the minimum period 
and in the case of the transmitter allow a greater serial bit rate to be transmitted.  Adding pipelining flip-flops increases 
the area footprint and adds one cycle of latency to the CODEC when transmitting and receiving.   
 
“Table 1” shows, as an example, the area footprints and the expected bit-rates when synthesized for a Xilinx Virtex-E 
device in the ‘-6’, slowest, speed grade.  The CODEC was synthesized using a standard configuration with an 
independent transmit clock and a 32 byte receive buffer size.  The transmit and receive clocks were not constrained and 
default analysis was performed by the Xilinx “trce” tool. Typically for a high speed transmitter then the pipelined DDR 
configuration will be chosen. 
 
The bit-rates given in “table 1” should not be considered as the maximum bit-rates achievable by the CODEC as the 
clocks were not constrained. Rather they are given as a comparison between the pipelined and non-pipelined 
configurations. 
 

Table 1 Area Footprint and Bit Rate Pipelining Comparison  
Area footprint Max Transmit Rate  Type 
Flip-flops LUTs SDR DDR 

Max Input Bit Rate,  
Receive Clock*2  

Non-Pipelined 257 352 93 Mbits/s 186 Mbits/s 285 Mbits/s 
Pipelined 267 354 141 Mbits/s 282 Mbits/s 345 Mbits/s 

 



 

 

Transmit Clock Configuration 
 
The transmit clock frequency determines the maximum bit rate achievable by the CODEC. The CODEC allows a 
number of transmit clock configurations to ensure the maximum bit-rate can be achieved, while also ensuring that all 
other possible user configurations are supported.  The transmit clock can be independent from the system clock, 
therefore decoupling the slower link control and status logic from the high speed bit-stream serialisation logic.   
 
The CODEC can be configured to generate variable data rates internally, using either a clock divider or a clock enable 
generator, or externally using a PLL or other clock multiplexing method. The internal clock divider generates a new 
transmit clock from the reference bit clock using a programmable divider. The internal clock enable generator uses 
enable signals to gate the D input of the transmitter flip-flops, therefore varying the data rate.  
 
When the CODEC is making a connection with the other end of the SpaceWire link then a default 10Mbits/s data rate is 
used. Dependent on the transmit clock configuration the default rate can be internally generated, as above, or an 
external 10/5 MHz input clock can be used as the reference. If an external 10/5 MHz clock is selected then it is also 
used to clock the initialisation state machine timeout counter and receiver disconnect detection counter.  For a DDR 
enabled transmitter the rising and falling edges of the transmit clock are used therefore a 5 MHz clock is adequate to 
provide the 10MHz reference.  
 
The SpaceWire CODEC uses ten valid discrete configurations for the transmitter bit clock as shown in “Table 2”.  The 
configuration symbolic names match the names uses as constants in the top level configuration package.  
 

Table 2 Transmit clock configuration 
Symbolic name Input clock Default 10/5MHz Variable data rate 

SYS_DEFAULT System Clock System Clock System Clock 
SYS_SLOWCLK System Clock External 10/5 MHz System Clock 
SYS_SLOWCLK_DIV System Clock External 10/5 MHz Clock divider 
SYS_DIV System Clock Clock divider Clock divider 
SYS_EN System Clock Clock enable Clock enable 
TXCLK_DEFAULT Transmit Clock Transmit Clock Transmit Clock 
TXCLK_SLOWCLK Transmit Clock External 10/5 MHz Transmit Clock 
TXCLK_SLOWCLK_DIV Transmit Clock External 10/5 MHz Clock divider 
TXCLK_DIV Transmit Clock Clock divider Clock divider 
TXCLK_EN Transmit Clock Clock enable Clock enable 

 
When the variable data rate and default 10Mbits/s data rate are generated internally, then “(1)” is used to determine the 
default data rate and “(2)” is used to determine the variable transmit bit rate. 

 10MbitRate = ( )1__ +TXCLKSLOWRATECFG
teTxMaxBitRa

 (1) 

 TxBitRate = ( )1+TXRATE
teTxMaxBitRa

 (2) 

 
Where CFG_SLOWRATE_TXCLK and TXRATE are port signals to the SpaceWire CODEC. 
 
Receive Buffer Configuration 
 
The receive buffer is used by the CODEC to store received data characters until they can be read by the host system. A 
buffer size of at least eight bytes must be present to allow at least one FCT character to be transmitted, enabling link 
start-up and data transfers. The receive buffer size is configurable in the CODEC, allowing the user to select the size of 
the receive buffer from 8 bytes to the maximum size available in the users implementation technology.  Valid sizes are 
on a 2N boundary, i.e. buffer sizes of 8, 16, 32, etc., as this allows the most efficient implementation of the receive 
buffer read, write pointers and the receive buffer status flags.  FCT credit operations are automatically performed 
internally by the CODEC dependent on the size of the receive buffer.  For example if the CODEC is configured with a 
receive buffer size of 1K bytes, then 1K of data can be received and stored from the other end of the link before any 
reads are performed by the CODECs host controller.  



 

 

 
The bit length of the read and write pointers is dependent on the size of the receive buffer, therefore the area footprint 
will increase with larger buffer sizes.  The user also has control of the maximum number of outstanding data characters 
expected by the CODEC, between 8 and 56.  Typically this value will be set to the maximum amount of receive buffer 
space available up to the maximum value of 56. 
 
Receiver Data Character Re-synchronization configuration 
 
Data characters in the serial input bit-stream are decoded in the recovered receiver clock domain and resynchronized 
into the receive buffer clock domain before being written to the receiver buffer as shown in “Fig 3”.  Re-synchronising 
the data characters to the receive buffer clock decouples the receive buffer from the unstable receiver clock domain, 
which may be exhibit erratic behaviour and cause the receive buffer pointers to become corrupted. When receiving data 
at the maximum rate and using the slowest possible receive buffer clock then the time taken to re-synchronise one data 
character is longer than the time taken to receive it.  Therefore the first data character received will be overwritten by 
the next data character before it can be stored in the receive buffer, if temporary storage is not allocated. 
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Fig 3 Receive Re-synchronisation Buffer 

 
The CODEC uses an internal 4 byte storage buffer to ensure that enough time is available for each data character to be 
synchronized to the receive buffer clock domain. An important goal of the SpaceWire CODEC was to allow the 
transmit and receive data storage to be implemented by the user dependent on the target implementation technology, 
typically latches for ASIC vendors and on-chip RAM resources for gate array users, such as FPGAs.  The CODEC 
allows the user to select the storage method, latches or flip-flops, used for the internal 4 byte buffer space, therefore 
ensuring the most efficient implementation of the CODEC is performed for the user’s technology. 
 
When the latch implementation is chosen data is written to the latches using a three cycle setup, write and hold process 
to ensure race conditions and data loss do not occur. In stage one the data and write address is set up, in stage two the 
latches are written to using a write strobe to the gate enable of the latch and finally in stage three the data and address 
are held for one clock cycle to ensure each latch is written to cleanly.   
 
The CODEC receiver adds a one cycle delay when receiving an EOP marker to ensure the three cycle latch write 
operation is not violation. EOP markers are only four bits in length compared to ten bits required for a data character. 
Therefore an EOP marker would be output from the receiver two clock cycles after a data character if the delay 
operation was not performed. The reception of a double or constant stream of EOP or EEP markers can also cause the 
three cycle latch write operation to be violated. In this case the user can configure the CODEC receiver to discard empty 
packets, packets consisting of no cargo and only an end of packet marker, as defined in the SpaceWire standard [1]. The 
CODEC receiver can also be thought of as a stand alone IP component, for example in a SpaceWire link monitoring 
application [6] where configuring the receiver to output empty packets can be used to detect a malfunctioning 
transmitter or host controller. 
 
HOST INTERFACE 
 
The host interface allows the host system to send and receive data or timecodes over the SpaceWire link and initiate 
link control functions such as starting the link.  
 
Link Control and Status Interface 
 
The initialisation state machine implements the SpaceWire exchange level state machine controller as shown in [1].  
The interface to the host system comprises a Start signal, a Disable signal and an Auto-Start signal. A 19.8 µs exchange 
of silence protocol is used at startup and after link disconnection to ensure both link interfaces are ready to start-up. 



 

 

After the exchange of silence protocol is performed the initialisation state machine is ready to make a connection and is 
enabled to do so dependent on (3). 
 
 LinkEnabled = (not Disable) and (Start or (Auto-Start and GotNULL)) (3) 
 
When Start is asserted and disable is not asserted then the CODEC will always try to make a connection. If a connection 
is not established after 12.8 µs then the exchange of silence protocol is re-initiated and the connection attempt will be 
made after the 19.8 µs silence time. If a NULL character is received and then an FCT character the link will move to the 
run state and data characters can be transmitted. When the link is set to auto-start then the CODEC remains in the ready 
state until a connection attempt is made by the other end of the link. In this case the receiver is enabled and the 
transmitter disabled until the SpaceWire interface at the other end of the link tries to make a connection. Therefore the 
LVDS drivers at the output buffer for data and strobe can be tri-stated to save power. This approach is implemented 
successfully in the SpaceWire router [4] [5] where the CODEC status outputs are used to externally tri-state the LVDS 
drivers. If disable is asserted then the CODEC will not attempt to make a connection and will disconnect the link if a 
connection has already been made. 
 
The control interface outputs a number of status bits shown in “Table 3”. The status bits are synchronised to the system 
clock and can be used as snapshot to the state of the CODEC interface. 
 

Table 3 CODEC Status Outputs 
Signal Description 

STATUS(0) Disconnect error. 
STATUS(1) Parity error. 
STATUS(2) Escape error. 
STATUS(3) Receiver credit error.  
STATUS(4) Transmitter credit error.  
STATUS(7:5) Interface state encoded into three bits (6 states) 
STATUS(8) Interface state machine is in the Run state. 
STATUS(9) Receiver got NULL. Remains asserted after first NULL. 
STATUS(10) Receiver got FCT. Remains asserted after first FCT 
STATUS(11) Receiver got N-chars. Remains asserted after first N-Char 
STATUS(12) Receiver got Timecodes. Remains asserted after first Timecode 
STATUS(13) Transmitter has credit to send one more data character 
STATUS(14) N-char sequence error (N-char received before link state is Run) 
STATUS(15) Timecode sequence error (Timecode received before link state is Run) 

 
Transmit Interface 
 
The transmit interface allows the host controller to transmit data and timecodes to the other end of the SpaceWire link. 
Data to be transmitted is read directly from the external transmit FIFO to the transmit shift register, therefore ensuring 
the maximum data rate can be achieved. The interface is synchronous to the transmit bit clock and consists of an empty 
flag, which indicates if there is more data to send, an eight bit wide data input and one control bit indicating EOP or 
EEP and a read enable signal which reads one data character from the FIFO.  A good implementation of the transmit 
FIFO will use independent read and write clocks to decouple the high speed transmit clock logic from the slower 
parallel data processing logic.   
 
Timecodes are accepted by the transmitter using a tick signal and an eight bit timecode input. When the tick signal is 
asserted and the CODEC has made a connection with the other end of the SpaceWire link then the next character to be 
transmitted will be the input timecode. Timecodes and FCT characters always have priority over data characters. 
 
Receive Interface 
 
The receive interface allows the CODEC to output received data characters and timecodes to the host controller.  As 
described previously the receive interface performs FCT credit operations internally dependent on the size of the 
receive buffer.  To perform efficient error recovery and credit operations the read and write pointers for the receive 
buffer are implemented internally and the user simply has to supply a memory buffer for the data characters and connect 



 

 

the read and write pointers to the buffer. When a data character is received and no errors are detected then the data 
character is written to the receiver buffer at the write pointer location. If the host controller performs a read operation 
from the receive buffer then the read input to the CODEC should is asserted and the read pointer is incremented if the 
read was valid, i.e. the receive buffer was not already empty.  The CODEC implements two receive buffer interface 
flags, an empty flag and a programmable level flag.  The programmable flag can be used to detect when the receive 
buffer has filled to a pre-defined level, half full etc., and for example wake up an external DMA or processor controller 
to start reading data characters from the receive buffer. 
 
If a timecode is received by the CODEC and no errors are detected then a tickout signal is asserted and the timecode is 
placed on the timeout eight bit data output. 
 
Receive Buffer Clock Frequency 
 
Typically the parallel data output from the CODEC will be processed at lower clock rate than the bit-stream clock rate.  
As shown below the maximum input bit rate which the CODEC can accept, dependent on the users target technology, 
and the minimum size of received packets determines the minimum frequency of the receive buffer clock.  The 
examples below show two scenarios 
 
Example 1 An input bit rate of 200Mbits/s and a constant flow of packets of one data character, with an EOP marker, 
causes a data character, including EOPs, to be output from the receiver on average every 35 ns.  In this case the absolute 
minimum receive buffer clock frequency is 28.571 MHz (1/35ns). 
 
Example 2 The same data rate as above is used but the minimum packet size expected by the CODEC is four data 
characters and an EOP marker. Therefore a constant flow of packets will cause one character to be output from the 
receiver every 44 ns on average. In this case the absolute minimum receive buffer clock frequency is 22.727 MHz. 
 
Due to variations in the transmit clock period and possible jitter on the serial data-strobe inputs then a tolerance should 
be added to the absolute minimum receive buffer clock frequency. From the examples above it can be seen that (4) 
should be used to determine the absolute minimum receive buffer clock frequency. 

 Minimum read clock frequency = ( )

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
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MinNumData
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Equation (5) defines the maximum input bit-rate which can be accepted by the CODEC in terms of the minimum 
receive buffer clock frequency and the number of data characters in a packet. 

 MaxInputBitRate = 







 ×

NumPktBits
rsNumPktNchaclkTrxbuf _

1
 (5) 

 where Trxbuf_clk = 
equencyRxBufClkFr

1
 

 and NumPktNchars = 1+MinNumData  
 and NumPktBits = 4)10( +×MinNumData  
 
In a typical system it is likely that the system clock will be adequate to resynchronize data characters to the receive 
clock buffer. If a very high input bit rate is required and the system clock is already tied to an external control logic 
source then the use of an independent receive buffer clock is supported by the CODEC. 
 



 

 

PERFORMANCE AND LATENCY 
 
The bit-rate performance of the SpaceWire CODEC is largely dependent on the users implementation technology. The 
CODEC is implemented in the SpaceWire router ASIC [5] and is expected to achieve a data rate of 200Mbits/s.  
Complex high speed devices can expect data rates up to the maximum 400Mbits/s achievable over a SpaceWire cable.  
The minimum transmitter latency is two transmit clock cycles measured from the time taken to accept the data or 
timecode character until the first bit of the character is output from the transmitter.  The minimum receive latency four 
receive clock cycles plus an additional two receive buffer clock cycles to resynchronize characters to the receive buffer 
clock.  One cycle of latency is added when the pipelined configuration is used.  The maximum transmit latency depends 
on the current character being transmitted (timecodes and FCTs have priority over data characters) and the time taken to 
start the link when the first data character is ready to be transmitted. 
 
VERIFICATION 
 
The SpaceWire CODEC was verified in accordance with sub-clause 12.2.4 of the SpaceWire standard.  Test-cases for 
the CODEC were derived directly from the SpaceWire standard, and the CODEC user manual for the added 
configurability and functionalities.  Functionality testing was performed by a VHDL testbench implemented using the 
Austrian Aerospace SpaceWire CODEC testbench model.  The testbench was modified to perform automatic 
verification of the CODEC. 
 
AVAILABLITY 
 
The SpaceWire CODEC VHDL IP will be made available for European space projects by ESA.  It is expected that this 
IP will be widely used for both ASIC and FPGA designs where a SpaceWire interface is required.  A comprehensive 
user manual has been included with the SpaceWire CODEC which details the function, configuration and interfaces 
which have been outlined in this paper. 
 
CONCLUSIONS 
 
This paper has given an overview of the work done on researching and developing a SpaceWire CODEC which will 
provide a platform for SpaceWire capable devices to communicate in the present and future.   
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